

Operating Instruction CS300FU

Prosinge
(1)

Giutents

1. Contents
2. Key to symbols 2
3. General safety instructions 2
4. Overview of products 3
5. Frequency Converter 5
6. Initial Operation 8
7. Programming with the LCD monitor 13
8. Navigator (LCD monitor only) 14
9. Overview of functions 16
10. Error messages and rectification 24
11. Technical data 26
12. EU Declaration of Conformity 26
13. Appendix 27

Kay 1 os symions

Danger of personal injury!

5TOP
The safety instructions must be observed!

Warning! Danger to property!
The safety instructions must be observed!

Information
Special information
OR
Reference to other sources of information

Guarantee

The function and safety of the equipment is only guaranteed if the warning and safety instructions included in these operating instructions are adhered to.
The producer is not liable for any personal injury or damage to property that occurs as a result of the warning and safety instructions being disregarded.

Using the equipment for its intended purpose
The CS 300 FU controls are designed only for controlling gates and doors with digital end position systems and integrated frequency converters. It is only permitted to operate the equipment in dry rooms.

Target group

Only qualified and trained electricians may connect, programme and service the controls.
Qualified and trained electricians meet the following requirements:

- knowledge of the general and specific safety and accident prevention regulations,
- knowledge of the relevant electrical regulations,
- trained in the use and care of appropriate safety equipment,
- capable of recognising the dangers associated with electricity.

Instructions for installation and connection

- The controls must be disconnected from the electricity supply before carrying out electrical works. After the disconnection there will be a residual voltage. Therefore a safety period of 180 seconds must be adhered to. During the works the electricity supply must remain disconnected.
- Local protective regulations must be complied with.
- Mains cables and control cables must be laid separately.

4. Oremem of morimes

Regulations and bases for testing

For connecting, programming and servicing, the following regulations must be observed (the list is not exhaustive).

Construction product standards

- EN 13241-1 (Products without fire resistance or smoke control characteristics)
- EN 12445 (Safety in use of power operated doors Test methods)
- EN 12453 (Safety in use of power operated doors Requirements)
- EN 12978 (Safety devices for power operated doors and gates - Requirements and test methods)

Electromagnetic compatibility

- EN 55014-1 (Radio disturbance, household appliances)
- EN 61000-3-2 (Disturbances in supply systems harmonic currents)
- EN 61000-3-3 (Disturbances in supply systems voltage fluctuations)
- EN 61000-6-2 (Electromagnetic compatibility (EMC) Part 6-2: Generic standards - Immunity for industrial environments)
- EN 61000-6-3 (Electromagnetic compatibility (EMC) Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments)

Machinery guidelines

- EN 60204-1 (Safety of machinery, electrical equipment of machines, part 1: general requirements)
- EN 12100-1 (Safety of machinery. Basic concepts, general principles for design. Basic terminology, methodology)

Low voltage

- EN 60335-1 (Household and similar electrical appliances - Safety)
- EN 60335-2-103 (Particular requirements for drives for gates, doors and windows)

Professional association (D)

- BGR 232 (Directive for Power-driven Windows, Doors and Gates)

4.1 Various options

CS300 FU controls can be supplied with the option of a frequency converter module integrated in the control housing (model CS 300 FU-E) or a frequency converter integrated in the door or gate operator (model CS 300 FU-I).
The following package options are available for both versions of the CS 300 FU control:

- CS 300 FU control with LCD monitor
- CS 300 FU control with LCD monitor in housing
- CS 300 FU controls without LCD monitor (monitor is required for adjusting the settings)

All the above options can be fitted with a plug-in weekly timer and a plug-in radio receiver.

The following options are available for the housing.

- housing with CS 3-button input switch
- housing with OPEN-STOP-CLOSE -button input unit
- housing with key switch ON/OFF
- housing with main switch
- housing with emergency off switch

The operating instructions describe the connection possibilities and programming procedures for the different models:

- CS 300 FU-E control with attached LCD display board
- CS 300 FU-I control with attached LCD display board
averylew of proxica:

4.3 CS 300 FU 0,75 basic board (with attached LCD display monitor)

Key:

X1: mains connection (mains) terminal block / power supply frequency converter (FC)
X2: terminal block for FC data cable
X3: terminal block command devices
X4: terminal block safety elements
X5: terminal block relay
X6: sockets for internal ON-OFF switch
X7: sockets for internal 3-button input unit
X8: socket for monitor (under monitor)
X9: sockets for radio receiver
X10: sockets for weekly timer
X11: sockets for digital limit switch system with safety circuit (STOP CIRCUIT)
X12: socket for external radio receiver
X13: terminal block for CS threebutton input unit
H4: status display for safety edge protection (SEP) - illuminated when SEP is working
H5: status display frequency converter (FC) - lights up when the FC is ready
H6: Safety circuit status message - lights up when the safety circuit is closed

Frectuener Converter

General

The frequency control system allows the door speed to be adjusted separately for the OPEN and CLOSE directions. The acceleration and retardation times (SPEED UP / SLOW DOWN) ensure a gentle start and stop at the end positions.
The frequency of the converter determines the operator speed.

Adjustable Values

The following values can be adjusted in the input menu.

SPEED UP

Acceleration time from minimum speed to maximum speed.

SLOW DOWN

Retardation time from maximum speed to minimum speed.

MIN SPEED OPEN

Minimum speed of the drive for the OPEN run (creep speed).

MAX SPEED OPEN

Maximum speed of the drive for the OPEN run.

MIN SPEED CLOSE

Minimum speed of the drive for the CLOSE run (creep speed).

MAX SPEED CLOSE

Maximum speed of the drive for the CLOSE run.

BRAKE POINT OPEN

The brake point for the OPEN run lies before the OPEN limit switch value. When the OPEN brake point is passed, the retardation time SLOW DOWN is triggered.

BRAKE POINT CLOSE

The brake point for the CLOSE run lies before the CLOSE limit switch value. When the CLOSE brake point is passed, the retardation time SLOW DOWN is triggered.

U START

The start-up voltage increases the performance of the door operators at low rotational speeds.
If the start-up voltage is set too high or too low, the door or gate may not run properly.
The start-up voltage can be set between OV and 42 V .
If the start-up voltage is too high, this will result in an overcurrent fault (FU2).
The start-up voltage must be reduced in this case.
If the start-up voltage is too low, then the motor will not have sufficient power to move the door.
The start-up voltage must be increased in this case.
Due to the variety of different types of doors and gates, the correct start-up voltage setting must be obtained through practical trials.

BRAKE RETARDATION

In the case of drives with a brake and low self-locking (high speed door drives), the brake release must be retarded when the door or gate starts moving to prevent the door from dropping.
This parameter can be ignored in the case of weight counterbalanced doors and gates.

RATED FREQUENCY

The frequency rating parameter must be set to the rated frequency of the motor. There are three modes available.

Frequencr Converrel

Opening Run of the Door/Gate

A MIN SPEED OPEN
B MAX SPEED OPEN
C SPEED UP
D SLOW DOWN
E OPEN brake point

1. The door/gate moves in the OPEN direction.
2. The frequency converter accelerates over an acceleration period SPEED UP (C) to reach its maximum speed MAX SPEED OPEN (B).
3. The door/gate reaches its maximum speed MAX SPEED OPEN (B).
4. The door/gate travels at the maximum speed MAX SPEED OPEN (B).
5. The OPEN brake point (E) is triggered and activates the soft run in the OPEN direction.
6. The frequency converter reduces the speed over the retardation period SLOW DOWN (D) to reach the minimum speed MIN SPEED OPEN (A).
7. The door/gate reaches its minimum speed MIN SPEED OPEN (A)
8. The door/gate travels at the minimum speed MIN SPEED OPEN (A).
9. The door/gate stops at the upper end position.

Closing run of the door/gate

F	MIN SPEED CLOSE
G	MAX SPEED CLOSE
H	SPEED UP
1	SLOW DOWN
j	CLOSE brake point

1. The door/gate starts to move in the CLOSE direction.
2. The frequency converter accelerates over an acceleration period SPEED.UP (C) to reach its maximum speed MAX SPEED OPEN (B).
3. The door/gate reaches its maximum speed MAX SPEED CLOSE (B)
4. The door/gate travels at the maximum speed MAX SPEED CLOSE (B).
5. The CLOSE brake point (E) is triggered and activates the soft run in the CLOSE direction.
6. The frequency converter reduces the speed over the retardation period SLOW DOWN (D) to reach the minimum speed MIN SPEED CLOSE (A).
7. The door/gate reaches its minimum speed MIN SPEED CLOSE (A)
8. The door/gate travels at the minimum speed MIN SPEED CLOSE (A).
9. The door/gate stops at the lower end position.

Effective OPEN DOOR acceleration time -
Example showing change of frequency setting

$\mathrm{t}=$ seconds

Information:
The time values set for SPEED UP /
SLOW DOWN always relate to the maximum values of 0 Hz to 100 Hz . The drive always starts with MIN SPEED OPEN.

The values set:

A	MIN SPEED OPEN	30 Hz
B1	MAX SPEED OPEN	50 Hz
B2	MAX SPEED OPEN	90 Hz
C	SPEED UP	1 second
D1	Effective acceleration time 1	
D2	Effective acceleration time 2	

If the time for SPEED UP (C) is set to 1 second, the effective acceleration time (D1) from 30 Hz to 50 Hz is 0.2 seconds. If the setting for MAX SPEED OPEN is increased to 90 Hz (B2), the resulting effective acceleration time (D2) is 0.6 seconds.

Effective OPEN DOOR acceleration time Example showing change of time setting

$\mathrm{t}=$ seconds

Information:

The values set for SPEED UP / SLOW DOWN always relate to the maximum values of OHz to 100 Hz . The drive always starts with MIN SPEED OPEN.

The values set:
A MIN SPEED OPEN 30 Hz
B MAX SPEED OPEN 50 Hz
C1 SPEED UP 1 second
C2 SPEED UP 2 seconds
D1 Effective acceleration time 1
D2 Effective acceleration time 2

If the time for SPEED UP (C) is set to 1 second, the effective acceleration time (C1) from 30 Hz to 50 Hz is 0.2 seconds. If the SPEED UP time is increased to 2 seconds (C2), the resulting effective acceleration time (D2) is 0.4 seconds.

6.1 General

Warning!

To guarantee that the equipment functions properly, the following points must be ensured:

- The gate or door is installed and operational.
- The command and safety devices are installed and ready for operation.
- The control housing with the CS 300 FU control is installed.

Information:

For the installation of the gate/door, the MFZ drive motor and the command and safety devices, the relevant manufacturer's instructions are to be adhered to.

6.2 Connection of Drive - Controls

Model CS300 FU-I, frequency converter module integrated in drive

[^0]
Connection to CS 300 FU Controls:

\square Connect power supply $\mathrm{FU}(\mathrm{G})$ at terminal X 1 .

- Connect AVE plug (A) at terminal X11.
\square Connect data cable FU (D) at terminal X2.

Model CS300 FU-E, external frequency converter module, 0.75 KW

C Motor output FU (U2, V2, W2), Temperature sensor, optional
D Plug connection for data cable FU
E LED operation FU
F Connection of brake resistance ($\mathrm{R}-\mathrm{R}+$)
G Power supply FU, 230 V (U1, N, PE)

Model CS300 FU-E, external frequency converter module, 1.5 KW / 3 KW

C Motor output FU (U2, V2, W2), Temperature sensor, optional
D Plug connection for data cable FU
E LED operation FU
F Connection of brake resistance ($\mathrm{R}-\mathrm{R}+$)
G Power supply FU, 400V AC

6.3 Mains connection

Danger!

ST0P
To guarantee that the controls function properly, the following points must be ensured: - The mains voltage must correspond to the voltage stated on the type plate. - For a permanent connection, an all-pole main switch must be used. - The drive cover must be closed.

Warning!

Before switching on the controls for the first time, a check must be carried out after completing the wiring to ensure that all the motor connections at the motor and at the controls are securely fixed. All control voltage inputs are galvanically isolated from the supply. For all components to be connected to the controls, at least one additional isolation with a rated voltage of $>230 \mathrm{~V}$ is recommended.

Detailed circuit diagram for mains connection (230 V AC 1-phase / 0.75 KW)

Detailed circuit diagram for mains connection (400 V AC 3-phase / 1.5 KW or 3 KW)

Key:
X1: terminal block for mains connection

Connection:

\square Connect the control to the mains.
\square Short before the corresponding screw terminals, groups of cables should be make safe by means of straps.

Information:
Technical data see page 26.

6.4 Allocation of connections for command and safety devices

Command and safety devices can be connected to terminals $X 3, X 4$ and $X 5$.

Terminal block X3

Terminal block X4

(for optoelectronic safety edge protection)

${ }^{1}$ sequence control
${ }^{2}$ button or selector switch
${ }^{3}$ effective in down direction
${ }^{4}$ for external switching devices (connection to terminals 1 and 2)

wt:	white
gr:	green
$\mathrm{br}:$	brown

Terminal block X4

(for 8.2 kOhm safety edge protection)

Terminal block X4

(for pneumatic safety edge protection - pressure sensor test:

- A 8.2 kOhm resistor must be connected in series
- The input parameter SEPTEST must be switched on)

Terminal block X4

(for three-wire photoelectric barrier)

- Three-wire photoelectric barrier

Pro-line
 SISTEM

5. Intial uneration

Terminal block X5
(potential free switch contact)

Key switch OPEN / CLOSE

6.5 Connection examples for command and safety devices (terminal block X3)

OPEN / STOP / CLOSE buttons
(6-lead solution)

OPEN / STOP / CLOSE buttons
(4-lead solution)

Impulse button
(sequence control)

- impulse button

Connection:

\square Connect the command and safety devices to the control.

Pratarminise heth the ICD monion

7.1 Overview of the LCD monitor

Key:
A: mode of operation / diagnostic info
B: parameter / diagnostic info
C: $\quad(+)$ button
D: (-) button
E: (P) button
F: value / status
G: value / status
H: jumper

7.2 LCD monitor, modes of operation

The control has four modes of operation with the LCD monitor:

1. AUTOMATIC
2. ADJUSTMENT
3. INPUT
4. DIAGNOSIS

When the jumper H is pulled, the + button, the - button and the P button have no function. The display still functions.

Operating mode 1: AUTOMATIC

In the AUTOMATIC operating mode the door system is operated.

Display:

- displays the function being carried out
- displays any error messages

If the "self locking" parameter is set to MOD2 or MOD3 in the input menu, the display changes from AUTOMATIC to MANUAL OPERATION.

Operating mode 2: ADJUSTMENT

In the ADJUSTMENT mode, the OPEN/CLOSED end position settings are adjusted.

Warning!
in the ADJUSTMENT mode of operation, the drive does not switch off when the end position is reached.
The drive moves at maximum speed.
The door can be damaged if driven beyond the end position.

Fine adjustments can be made in the INPUT operating mode.

Display:

- displays the end position value

Operating mode 3: INPUT

In the INPUT operating mode, the values of various parameters can be altered.

Display:

- displays the selected parameter
- displays the programmed value /status

Operating mode 4: DIAGNOSIS

In the DIAGNOSIS operating mode, door-specific checks can be queried.

Display

- displays the check
- displays the checking status

	Save door position:
ADJUSTMENT	\oplus Hold P pressed and
MANUAL UP	$\oplus>1 \mathrm{Sec}$.
ADIUSTMENT	Save door position:
MANUAL DOWN	\oplus Hold P pressed and
	$-\gg 1 \mathrm{Sec}$.

\oplus and $\Theta>2 \mathrm{sec} \rightarrow$

INPUT GERMAN	:		Scrall up through menu:$\oplus>2 \mathrm{sec} .$
INPUT RUNNING TIME	:	60	
INPUT TIME OPEN	;	0	$\bigcirc>2 \mathrm{sec}$.
INPUT FOREWARNING	:	0	Select value: $(P>1 \mathrm{Sec} .$
INPUT TURN- TURNAROUND TIME	:	0,3	Increase value: \oplus
INPUT M1-3 RESTING	:	Mod1	Decrease value:
InPUT QUICK CLOSE	;	OFF	Save value:
INPUT RELAY 1	:	Mod6	Return to
INPUT RELAY 2	:	Mod7	INPUT: \oplus and $\Theta>1 \mathrm{sec}$.
INPUT RELAY 3	:	Mod1	
INPUT RELAY 4	:	Mod14	
INPUT SEP TEST	:	OFF	
inPuT DELAY OPEN	:	OFF	
input FINE OPEN	:	4050	
input FINE CLOSE	:	3950	
INPUT BES OPEN	:	4000	
input BES CLOSE	:	4000	
INPUT ROTATING FIELD	:	RE	
INPUT REVERSE OFF	:	50	
input AUTO LEVEL	:	OFF	

3. Drewiew of fourctions

9.1 Automatic operating mode

Display	Description
AUTOMATIC OPENING	The door is driven to the OPEN* end position*
AUTOMATIC CLOSING	The door is driven to the CLOSED* end position
AUTOMATIC RESTING	The door stands between the end positions
AUTOMATIC	
RESTING	0

Information:

If the "self locking" parameter is set to MOD2 or MOD3 in the input menu, the display changes from AUTOMATIC to manual operation.

Display	Description
MANUAL MANUAL UP	The door is driven to the OPEN* end position*
MANUAL MANUAL DOWN	The door is diviven to the closed ${ }^{*}$ end position
MANUAL RESTING	The door stands between the end positions

9.2 Input operating mode

Function	Description		Setting options	Factory setting
DEUTSCH	Select the menu language		DEUTSCH ENGLISH FRANCAIS ESPANOL NEDERLANDS POLSKI CESKY ITALIANO	DEUTSCH
RUNNING TIME	Monitoring the max. running time for an open and close movement. The running time must be set to be slightly greater than the effective running time of the door.		1-250 Seconds	60 Seconds
TIME OPEN	After the door has opened, it runs in the CLOSE direction again after the set time has elapsed. At a setting OPEN TIME >0, the impulse function ($\times 3$ 8/9) only generates commands in the OPEN direction.		$0-600$ Seconds	$0=$ Auto-dose off
FOREWARNING	Before the door starts to move downwards, the traffic light flashes during the forewarning time if automatic closing is activated, or in the case of impulse operation.		0-120 Seconds	$0=0 \mathrm{ff}$
TURNAROUND TIME	Standing time at every change of direction		$\begin{aligned} & 0,1-2,0 \text { Seconds } \\ & \text { (in } 1 / 10 \text { Sec) } \end{aligned}$	0,3 Seconds
M1-3 RESTING	$\begin{aligned} & \text { MOD1: } \\ & \text { MOD2: } \end{aligned}$	When resting relay OFF (door closed) When resting relay ON (door closed)	$\begin{aligned} & \text { MOD1 } \\ & \text { MOD2 } \end{aligned}$	MOD1
$\begin{aligned} & \text { QUICK } \\ & \text { CLOSE } \end{aligned}$	ON:	The open time is cut short and the door closes immediately after the photoelectric barrier ($\mathrm{X} 43 / 4$) has been activated. This function is also active if the open time $=0$.	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	OFF
	OFF:	The open time continues as usual		
RELAIS 1	All 4 relays can be allocated to a relais mode of 1-28. The parameter M1-3 TRAFFIC LGHT REST affects the red trafici light (MOD 1-3).		MOD1 - MOD13 MOD17 - MOD28	MOD6
RELAIS 2	MOD1:	(Red light 1) flashes during forewarning and is on when door is running	MOD1 - MOD13 MOD17 - MOD28	MOD7
RELAIS 3	MOD2:	(Red light 2) flashes during forewarning and when door is running	MOD1 - MOD13 MOD17 - MOD28	MOD1
RELAIS 4	MOD3: MOD4: MOD5: MOD6: MOD7: MOD8: MOD9: MOD10:	(Red light 3) is on during forewarning and when door is running Impulse signal at OPEN command Error message (In the case of stop messages and error messages, please refer to section 10) OPEN end position CLOSE end position Final position OPEN denied Final position CLOSED denied Before-end position OPEN	MOD1 - MOD28	MOD14

aremitem of furteifons

Function	Description		Setting options	Factory setting
	MOD11:	Before-end position CLOSE		
	MOD12:	From before CLOSE position to CLOSE position		
	MOD13:	Magnetic locking function		
	MOD14:	Brake		
	MOD15:	Brake negated		
	MOD16:	Brake		
	MOD17:	SEP activated		
	MOD18:	(Red light 4)		
		flashes during forewarning and is off when door is running		
	MOD19:	From before-end position OPEN to OPEN end position		
	MOD20:	Activation of transmission system		
	MOD21:	Test mode before opening run		
	M0D22:	Test mode before closing run		
	M0023:			
		is on during OPEN end position		
		and OFF during forewarning and OFF when door is running		
	MOD24:	Capacitor circuit for 230 V single phase drives		
	MOD26:	FREE (continuously ON)		
	MOD27:	Impulse signal after attaining OPEN end position		
	M0D28:	Relay OFF		
SEP TEST	ON:	PS testing is active	ON	OFF
	OFF:	PS testing is inactive	OFF	
	The testing of the PS switch takes place in the CLOSE end position. To achieve this, the airswitch contact must be activated briefly when the door comes to rest on the ground.			
DELAYOPEN	ON:	Forewarning also before opening	ON	OFF
	OFF:	Immediate opening	OFF	
	Only active when the parameter FOREWARNING TIME is >0.			
FINE OPEN	Fine adjustment of OPEN end position		$0-8190$ (is set to programmed value after adjustment)	4050
FINE CLOSE	Fine adjustment of CLOSE end position		0-8190	3950
BES OPEN	Setting of cut-out point before-end position OPEN / PART OPEN		0-8190	4050
BES CLOSE	Setting the before-end position switch point for the CLOSE direction		0-8190	4000
ROTATING FIELD	MOD1:	Standard assembly (clockwise rotating field / increasing AVE values during opening run)	$\begin{aligned} & \text { MOD1 } \\ & \text { MOD2 } \end{aligned}$	C
	MOD2:	Special assembly (anticlockwise rotating field / increasing AVE values during opening run)		
	This setting may only be altered in the case of a special customised drive installation!			
REVERSE OFF	The point where the reversing switch is activated before the CLOSE end position is reached. After going beyond the cut-out point, the door is stopped if the switching strip or photoelectric barrier is activated, but it is not reversed. The value must not exceed a maximum of 5 cm above the lower end position.		10-250	50
AUTO LEVEL	$\begin{aligned} & \text { ON: } \\ & \text { OFF: } \end{aligned}$	Align with ground, ON Align with ground, OFF	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	MOD1

ariermew of farcizans

Function	Description	Setting options	Factory setting
SLOW DOWN	Retardation time from maximum speed to minimum speed. BRAKE P OPEN	The OPEN brake point lies before the OPEN limit switch value. When the OPEN brake point is passed, the retardation time SLOW DOWN is activated. The adjustable value is based on the distance from the OPEN limit switch.	$0-1$ Sec. -2 Sec.

Explanation of the relay modes:

A. Traffic light functions

MOD	Description	CLOSED end position	OPEN end position	Forewarning	Door run
MOD 1	Red traffic light 1	ON / OFF *	OFF	Flashing	ON
MOD 2	Red traffic light 2	ON/ OFF *	OFF	Flashing	Flashing
MOD 3	Red traffic light 3	ON/ OFF *	OFF	ON	ON
MOD 18	Red traffic light 4	OFF	OFF	Flashing	OFF
MOD 23	Green traffic light	OFF	ON	OFF	OFF

* depending upon parameter MOD1-3 RESTING
B. Position messages

MOD	Description	Remarks
MOD 6	OPEN end position	The relay closes the contact when the door is in the OPEN end position.
MOD 7	CLOSED end position	The relay closes the contact when the door is in the CLOSED end position.
MOD 8	Not OPEN end position	The relay closes the contact when the door is not in the OPEN end position.
MOD 9	Not CLOSED end position	The relay closes the contact when the door is not in the CLOSED end position.
MOD 10	Before-end position OPEN / PART OPEN	The relay closes the contact when the door is in the before-end position OPEN / PART OPEN.
MOD 11	Before-end position CLOSED	The relay closes the contact when the door is in the before-end position CLOSED.
MOD 12	Before-end position CLOSED to CLOSED end position	The relay closes the contact when the door is in the area between the end position CLOSED and the before-end position CLOSED.
MOD 19	Before-end position OPEN to OPEN end position	The relay closes the contact when the door is in the area between the OPEN end position and the before-end position OPEN / PART OPEN.

C. Impulse signals

MOD	Description	Remarks
MOD 4	Impulse when there is an OPEN command	The relay closes the contact for 1 second when the door receives an OPEN command. This impulse can be used to control lights, for instance.
MOD 27	Impulse when OPEN end position is reached	The relay closes the contact for 2 seconds when the door reaches the OPEN end position. This impulse can be used, for instance, to open a following photoelectric barrier.

D. Brake functions

MOD	Description	Remarks
MOD 14	Brake	The switching contact of the brake rectifiers is activated via the relay to achieve a quicker brake function. The contact is closed, and the brake released as a result, as soon as the door moves (zero current brake).
MOD 15	Brake negated	The switching contact of the brake rectifiers is activated via the relay to achieve a quicker brake function. The contact ts poned, and the brake released as a result, as soon as the door moves (operating current brake).

3. Bratyam of inneitabs

E. Error messages

MOD	Description	Remarks
MOD 5	Error message	The relay closes the contact when a stop command is given or an error occurs. All errors described in section 10 result in activation of the relay.
MOD 17	SEP activated	The relay opens the contact when the switching strip is activated. An error in the switching strip or an unsuccesful test is shown via MOD 5.

F. Functions for external accessories

MOD	Description	Remarks
MOD 13	Magnetic lock function	The relay is open in the CLOSED end position. If an OPEN command is received, the relay closes and remains closed until the CLOSED end position is reached again. If a time delay is required for opening the magnetic lock, this is realised through the parameter DELAY OPEN and forewarning.
MOD 20	Activation of optoelectronic transmission system	Before every CLOSE command, the optoelectronic transmission system is activated and remains active for the duration of the closing run. This activation results in a closing run delay of approx. 0.5 seconds.
MOD 21	Test of draw-in protection	The relay generates a test signal when the CLOSED end position is reached and expects, as a reaction to the test signal, that the safety circuit is activated.
MOD 22	Test of external safety devices	The relay generates a test signal when the OPEN end position is reached and expects, as a reaction to the test signal, that the switching strip input circuit is activated.
MOD 24	Capacitor	At every drive command the relay closes for approx. 1 second. With the aid of this relay, an additional starting capacitor that is required for $A C$ applications is switched on in addition, to ensure safe starting of the motor.
MOD 25	Yard light function	At every OPEN command, the relay is closed for 2 minutes and can therefore be used to control a light.
MOD 26	Activation of radio transmission system	Before every CLOSE command the radio transmission system is activated by an impulse. The duration of the activation must be set in the transmission system. This activation results in a closing run delay of approx. 0.5 seconds.
MOD 28	Relay OFF	The relay is always open.

9.3 Diagnostic operating mode

Display	Meaning	Statu	
DIAGNOSE R2.0 011 007037	Software version	Display	software versions of CS 300
ES-OPEN	OPEN end position	OFF: ON:	confirmed not confirmed
ES-CLOSE	CLOSE end position	OFF: ON:	confirmed not confirmed
OPEN BUTTON	OPEN button	ON: OFF:	confirmed not confirmed
PART OPEN	PART OPEN button ($\mathrm{X} 4 / 9+10$)	ON: OFF:	confirmed not confirmed
CLOSE BUTTON	CLOSE button	ON: OFF:	confirmed not confirmed
SEP	Safety edge protection	ON: OFF:	system circuit is closed system is interrupted (fault)
IMPULSE	Impulse button	ON: OFF:	confirmed not confirmed
TIMER	Weekly timer	ON: OFF:	confirmed not confirmed
P/E BARRIER	Photoelectric drive-through barrier	ON: OFF:	circuit closed interrupted (fault)
STOP CIRCUIT	- Stop button of controls - Stop systems of drive	ON: OFF:	circuit closed interrupted (fault)
CYCLE	Gate-cycle counter	Display	gate cycles
AVE	Absolute value encoder	Shows	gate position value

10. Eiror messanes and redfriminas

Fault / error message	Cause	Rectification
System does not respond	- No voltage supply	- Check the voltage supply of the drive and the controls
Door travels to the CLOSE end position when the OPEN button is pressed Door travels to the OPEN end position when the CLOSE button is pressed	- Rotational field at the motor is incorrect.	- Switch over the FU unit terminals U2 and V2
STOP	-The safety circuit is interrupted. X3 1,2: Emergency off, slack rope switch, wicket door contact, draw-in protection X6 1,2: Internal On-Off switch X11 4,8: Safety circuit for door operator X2 B1/B2: Bridge X3 3,4: External stop button X7 1,2: internal stop button	- Check and then close the safety circuit
ERROR END POSITION	-The door has travelled beyond one of the end positions - The end positions have not been programmed yet	- Check the programming of the end positions and reset them if necessary
ERROR RUN TIME	-The programmed running time has been exceeded	- Check the path of the door - Re-programme the running time
ERROR SEP	- The safety edge protection is faulty	- Check the safety edge protection and the spiral cable
	- Safety edge protection was triggered	- Remove obstruction from path of door
ERROR PRESSURE SENSOR TESTING	- The PS switch is not activated at the CLOSE end position	- Check the PS switch, spiral cable and profile - Check the setting for the CLOSE end position
ERROR ROT. FIELD	- On'y special assembly motors are operated with an anticlockwise rotating field.	- in the "rotating field" input menu, reprogram the rotating field parameter from R to L
ERROR RS 485 AWG	- Communications fault between the end position switch and the controls	- Check the cable and socket connections
ERROR RS 485 FU	- Communication fault between frequency converter and control	- Check the cable and socket connections
ERROR POWER	- The power monitoring has been triggered	- Check that the door can open easily and smoothly - Check AVE (absolute value encoder) plug

Fault / error message	Cause	Rectification
ERROR FU 1	- Undervoltage	- Check the voltage supply of the drive and the controls - Check that all connections are securely fixed
ERROR FU 2	- Overvoltage	- Check that the door can open smoothly and easily - For sectional doors, check the springs and reset - The preset connection period of the drive may not be exceeded
ERROR FU 4	- Frequency converter overheating	- Check that the door can open smoothly and easily - For sectional doors, check the springs and reset - The preset connection period of the drive may not be exceeded
ERROR FU 9	- Frequency converter overloaded (peak current)	- Check that the door can open easily and smoothly - For sectional doors, check the springs and reset
ERROR FU 10	- Frequency converter overloaded (intermediate circuit overloaded)	- Check that the door can open easily and smoothly - For sectional doors, check the springs and reset
ERROR FU 13	- Frequency converter overloaded (short-circuit)	- Check that the door can open easily and smoothly - Check the motor for short-circuits
ERROR FU 16	- No release from control	- Check safety circuit of the control - Check data cable to frequency converter

After rectifying the cause of the fault, the controls must be disconnected briefly from the mains! After a reaction time of 15 seconds, the frequency converter is ready again (H5).

11. Tentinical data

Dimensions of housing:	$245 \times 455 \times 200$
Assembling height:	vertically at the wall, min. at a height of 100 mm
Power supply via L, N:	$230 \mathrm{~V}, 1 \mathrm{PH}, 50 \mathrm{~Hz}$
Protection:	10 AK -characteristic
Own consumption of control:	max. 250 mA
Control voltage:	24 V oc, max. 250 mA ; protected by self-resetting safety for external sensors
Control inputs:	24 VDC , all inputs are to be connected free of potential, min. signal time for incoming control command $>100 \mathrm{~ms}$.
Control outputs:	24 VDC, max. 250 mA
Safety chain/ Emergency shutdown:	all input connections must be potential-free; if the safety circuit is interrupted, no further electrically powered movement of the drive is possible, not even in deadman mode.
Input safety bar:	For electrical safety bars with $8,2 \mathrm{k} \Omega$, moving loads and dynamic optic systems.
Relays output:	If inductive loads are switched to (e.g.: relays or breaks), so these must be equipped with corresponding interference measures (recovery diode, varistores, RC modules). Operating contact free of potential, min. 10 mA max. $230 \mathrm{VAC} / 4 \mathrm{~A}$ Contacts used once for power switch are not able to switch mini power anymore.
Temperature range:	Operation: $-10^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$ Storage: $\quad-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
Air humidity:	to 80\% non condensing
Vibrations:	Assembling works with less vibration, e.g. at a masonned wall
Type of protection:	IP 65
Weight:	about $1,8 \mathrm{~kg}$

S1 Dectaration of Confomity

We hereby declare that, by virtue of their conceptual development and design, as well as their manufacture as we have brought them onto the market, the products cited below:

CS300 FU Door Controls

conform to the relevant basic health and safety regulations of the following EU guidelines and standards:

EU Construction Products Directive 89/106/EU
 DIN EN 13241-1
 DIN EN 12453
 DIN EN 12445
 DIN EN 12978

EU Electromagnetic Compatibility Directive
2004/108/EG
EN 55014-1
EN 61000-3-2
EN 61000-3-3
EN 61000-6-2
EN 61000-6-3

EU Machinery Directive 2006/42/EG
EN 60204-1
EN ISO 12100-1

EU Low Voltage Directive 2006/95/EG
EN 60335-1
EN 60335-2-103

BGR 232 - Directive for Power-driven Windows, Doors and Gates

Place, Date.
Manufacturer's signature:

Limit switch and safety circuit for drive

Electronic interface

A: AVE plug (absolute value encoder plug)
B: AVE plug terminal (absolute value encoder plug terminal)

Wiring allocation, AVE (absolute value encoder) plug

1 - grey:	Safety circuit input
2 - pink:	RS 485 B
3 - white:	GND
4 - yellow:	RS 485 A
5 - green:	Safety circuit output
6 - brown:	$7 \ldots .18 V_{D C}$

AVE (absolute value encoder) plug terminal (7-12)

C: Thermal element in the drive
D: Manual emergency control
(emergency crank or emergency chain)

Prositine

[^0]: A AVE plug
 B AVE plug terminal
 C Motor output FU (U2, V2, W2),
 Temperature sensor, optional
 D Plug connection for data cable FU
 E LED operation FU
 F Connection of brake resistance (R -, $\mathrm{R}+$)
 G Power supply FU, 230 V (U1, N, PE)

